Software Aging and Multifractality of Memory Resources

January 8, 2003

Abstract

We investigate the dynamics of monitored memory resource utilizations in an operating system under
stress using quantitative methods of fractal analysis. In the experiments, we recorded the time series
representing various memory related parameters of the operating system. We observed that parameters
demonstrate clear multifractal behavior. The degree of fractality of these time series tends to increase
as the system workload increases. We conjecture that the Holder exponent that measures the local
rate of fractality may be used as a quantitative measure of software aging. We propose a simple proac-
tive computer crash avoidance strategy based on the online fractal analysis of system memory resource
observations.

1 Introduction

1.1 Software Aging

A phenomenon known as “software aging” has been identified and described in recent literature [22, 19, 17].
It is important to distinguish between the two definitions of software aging discussed in the literature. The
first use of the term was introduced by David Parnas [14] and refers to the degradation of a software system
performance over many years as maintenance of the system introduces significant changes and/or as the
requirements of the organization change. The second use of the term, the one we are concerned with here,
refers to the performance degradation of a software system over a period of hours, days or months, as
errors accumulate while the system is running. This use of the term “software aging” is applicable mainly
to software systems that are designed to run for long periods of time, such as a server in a client-server
application, or a control system on a long-term space mission.

All computer users are familiar with the phenomena of operating system crashes and software freezes.
These unexpected events usually result in a loss of time and, eventually, data. The first and most important
way to counteract system crashes is to design and build better software. Large software systems, however,
are extraordinarily complex entities, and achieving perfection in their design and implementation is unlikely
if not impossible. The next line of defense is to take proactive measures to anticipate crashes so that data
can be saved and the system can be shut down, cleaned, and restarted in a rejuvenated state. This process
has been described as “software rejuvenation” [22, 18, 16].

The causes of software aging are the accumulation of numerical rounding errors, the corruption of data,
the exhaustion of operating system resources, unreleased file locks, memory leaks, and other similar minor
malfunctions [6]. Errors and failures are due to faults described by Gray [4] and Huang et al. [22] as
Heisenbugs. The activation of these faults is non-deterministic and they could remain inactive for a long
time. Bohr bugs, on the other hand, are deterministic and predictably lead to a software failure. Heisenbugs
are difficult if not impossible to detect by system testing due to their non-deterministic character. Indeed,
the term was first used to describe those bugs that cease to occur whenever debugging or tracing flags are
used during software compilation.

Since these errors are very difficult to anticipate directly, we must look for other ways of predicting when
a system is in a vulnerable state. Vaidyanathan and Trivedi [6] propose a semi-Markov reward model based
on system workload and resource usage to estimate the time of failure of a system. However, the data
they collected tend to fluctuate a great deal from the supposed linear trends, resulting in prohibitively wide
confidence intervals. The dynamics of memory resources appears to be heavily irregular and nonlinear.

In the last decade there have been successful attempts by many researchers to apply fractal analysis to
model and study highly irregular signals arising in various fields of natural sciences and engineering (see
[20]). Our hypotheses have been that

1. the temporal dynamics of memory-related resources of an operating system has multifractal structure;

2. analysis of the multifractal patterns in time series of the system resources can be used for determining
whether an operating system has begun to age and is likely to crash.

The results presented in the paper provide initial support for the above hypotheses.

1.2 The Fractal Approach to Software Rejuvenation

Fractal geometry is a relatively new area within mathematics, having been developed in the 1960s and 70s by
Benoit Mandelbrot [9], which is continually proved useful in modeling various complex, chaotic phenomena
of nature. In the recent years it has been discovered that many objects of human derivation such as network
traffic patterns [21] and the stock market [15, 8] display fractal characteristics. Fractal analysis has been
employed with success in the analysis and synthesis of speech signals [10, 2], in the analysis of human
heartbeats [13, 12], and in image compression algorithms [1, 5]. The goal of our study is to establish that the
time series of resource use in operating systems display fractal behavior, whose quantitative characteristics
vary with time. Such behavior is called multifractal. We also conjecture that the patterns of the multifractal
behavior of these signals contain information about the ”age” of the operating system and can be exploited
to predict the best times to engage in the preventive maintenance of the operating system. The results
reported here appear to support this hypothesis and indicate a possible approach to solving the problem.

1.3 Structure of the Paper

The remaining sections of the paper will be devoted to explaining the mathematical theory that underlies our
approach, discussing the operating system resources we measured and their fractal characteristics, explaining
the design of the experiment, suggesting possible methods for developing a model for the detection of software
aging and the prediction of imminent operating system crashes, and suggesting directions for further work.

2 Multifractality in Functions and Signals

A function or a signal is usually referred to as fractal if its graph displays such fractal characteristics (see
e.g. [3]) as (local) self-similarity, irregularity, fine structure, and fractional dimension. When viewed as a
random process,. A function that displays variable local scaling at different points is known as multifractal.
Multifractal analysis deals with the description of the singularity structure of functions, signals or measures
(see [23]).

The basic numerical characteristics used in the multifractal analysis is the so-called Holder exponent
which has lately become a popular signal processing tool among scientists in various fields that deal with
irregular and rapidly oscillating data (ee e.g. [13] for an example of application of Holder exponent in the
analysis of the heart beat signal). Holder exponent which is discussed in more detail in the next subsection,
captures the local multifractal information. The global multifractality is described through geometrical or
statistical distribution of the Holder exponent i.e. the multifractal spectrum. In this study we have focused
on the variation of the local fractality of oprating system resources, and therefore Holder exponent has been
our primary quantitative tool. Another reason for using Holder exponent in our context is that it is relatively
easy to estimate in an online experiment. However, we believe that using methods of the global multifractal
analysis may yield additional insight into the dynamics of the resource exhaustion, and plan to address this
issue in our future publications.

2.1 The Holder Exponent

The Holder exponent of a function is a local characteristic calculated at every point where the function is
defined and reflecting the decay rate of the amplitude of the functions fluctuation in the neighborhood of

that point as the size of the neighborhood shrinks to zero. A highly irregular and chaotic point in a function
is characterized by a lower value of Holder exponent and a smoother portion of a function will have higher
Holder exponent. A function may have different Holder exponents at different points due to a variation in
the local degree of fractality, in which case it is referred to as multifractal.

A function f defined in a neighborhood of a point g has a Holder exponent « at o if and only if (see

[7]):
1. For every real v < a:

|f(to +h) — P(h)]

o IR =0
and
2. If a < 400, for every real v > a:
to+h) — P(h
o 0 £ 1) = PO _

h—0 |h|’Y
where P is a polynomial whose degree is less than or equal to a.

We will denote the Holder exponent of a function at to as Hy(tg). It is easy to see that Hy(t) > 1 if
and only if the function f(¢) is differentiable (locally smooth), at ¢o. For instance, in the extreme case when
the function is (locally) constant near ¢ the definition of the Holder exponent clearly implies that for such
a function Hy(t) = oo (since log(0) = —oc). A non-constant linear function f(t) = at + b with a # 0 has
Holder exponent 1.

The value of Holder exponent #H s (t) = « strictly below 1 indicates fractality: it implies that the function
is not differentiable at the given point and the amplitude of its oscillations within e-neighborhood of the
point scales as € for € — co. Different values of Holder exponent indicate different ”degrees of fractality”.
Classical fractal functions are strictly self-similar, i.e., their singularities have the same scaling at every point.
Such is the Weirestrass function, described in the next subsection.

In the most of our experimentally collected data sets, however, the Holder exponent stays within the
range (0,1) which characterizes a non-differentiable (or fractal) signal.

2.2 Calculating the Holder Exponent

Véhel and Daoudi have shown [20] that the Holder exponent at a point ¢ of a function f(t) can be expressed
by the formula

. log(Jf(E4+h) = f(1)])
Hy(t) = lim inf Tog (A1) :

(1)

The definitions and formulas for the Holder exponent given above assume f to be a function of a con-
tinuous variable ¢ (time). In the experimental context however we deal with a discrete signal, and therefore
the numerical computation of Holder exponent presents a problem. Even though algorithms for calculating
the Holder exponent of a time series have been developed and used, they were not suitable for our purposes,
since our goal was to monitor the parameters of an operating system and compute their Hélder exponent in
real time. The existing algorithms are based either on the IFS approximation or the wavelet expansion of the
signal and, therefore, require the knowledge of the entire time series in order to estimate the Holder exponent
at any point. This feature renders them inconvenient for the task of on-line Holder exponent estimation. We
have developed an algorithm for on-line estimation of the Holder exponent of a signal based on equation 1,
the details of which are given in the Appendix.

We tested our algorithm for calculating the Holder exponent by running it on so-called generalized
Weierstrass functions [23] whose Holder exponent can be predefined and then compared with the results
obtained using the numerical algorithm. The generalized Weierstrass function is defined by the formula

o

F(t) = 378 sin(3ke),

k=0

where s(t) is the seed function ranging between 0 and 1 (see e.g. [7]). It is known that s(t) = H(t) for all ¢.

Figure 1 shows the plot of our Holder exponent estimation compared to the predefined Holder exponent
s(t) for the case when s(t) = |sin(5nt)|, the generalized Weierstrass function with its Holder exponent
specified at every point by s(¢) is shown next to the seed function, and our estimation of the Holder exponent
along with an alternative estimate of the Holder exponent obtained by a wavelet based algorithm used by
[7], are shown in the bottom half of the figure.

Our algorithm demonstrated consistently high precision (consistently exceeding the presision achieved by
the Daoudis method) for several test functions constructed according to the above formula.

Lt

a0 ol 02 03 04 05 06 07 02 09 1.0 g 01 02 03 04 05 06 DT O3 09 L0
1.0 1.0
oo 0.9
0.8 0.8]
0.7 0.7]
0.6 0.6 7]
05 057
04 04
03 03]
n2 027
0.l 0.l 7]
0 ol 02 03 D4 05 06 DT OE 09 1.0 0 01 02 03 04 05 06 07 D8 09 L0

Figure 1: Our estimation of the Hélder exponent, on the lower right, compared with Dauodi’s estimation on
the lower left. The plot in the upper left is the plot of the seed function, and the plot in the upper right is
the resulting Generalized Weierstrass function.

3 Fractality of Operating System Resources

Current operating systems have a great number of parameters that can be monitored during system opera-
tion. Not all of them, however, can be viewed as interesting or even meaningful for the kind of fractal data
analysis we conduct.

It turns out that the majority of data collected by standard operating system data collection processes,
viewed as mathematical objects, behave more like measures, not functions, i.e., they represent a density of
certain flow of (random) events, not a quantity that describes the internal state of the operating system
and evolves as a continuous function of time. Examples of the former type of parameters (measures) are
the number of page requests per second, the number of system calls per second, the number of interrupts
per second, and so on. The dynamics of this class of parameters is undoubtedly interesting and we expect
them to also display fractal behavior. However, the machinery of the fractal analysis applicable to measures

differs considerably from the one applicable to functions. In this paper we are concerned with the latter,
while planning to present a study of the former in future publications.

The most easily identifiable class of operating system parameters that represent a function (not a measure)
consists of the parameters related to the memory use. These are the parameters that we focused on in our
experiments.

Our first series of experiments in collecting and studying operating system data focused on a Unix server
in a large academic computing environment. The server has 256 MB of RAM, dual 333 MHz processors,
runs SunOS 5.5.1, and it usually experiences heavy computational workloads. Monitored parameter values
were collected once per second using sar (system activity reporter) utility. We concentrated on the following
six parameters of time-series data:

1. sml mem - the amount of memory the kernel memory allocator has reserved for small requests.
2. sml_alloc - the amount of memory allocated to satisfy small requests.

lg_-mem - the amount of memory the kernel memory allocator has reserved for large requests.
lg_alloc - the amount of memory allocated to satisfy large requests.

freemem - average pages available to user processes.

S o w

freeswap - disk blocks available for page swapping.

We found that two parameters displayed marked fractal characteristics, a couple were less fractal, and
the two parameters dealing with the amount of reserved memory (sml mem and lg_-mem) demonstrated
quite smooth behavior, with no obvious indication of fractality.

Figure 2 shows a plot of the freemem parameter with a plot of its Holder exponent beneath it. In this
case, the free memory resource displayed little fractality for the first 4900 seconds or so, and the bulk of
the Holder exponent values for that time period fall between 0.6 and 1. This is followed by an outburst of
chaotic behavior, which is captured by the Holder exponent as it falls to between 0.3 and 0.6. When the
period of fractality is over, the Holder exponent rises again.

A more intriguing interplay of data and Holder exponent is seen in Figure 3. In this case, a sharp
drop in the lg_alloc parameter is immediately preceded (by about 30 seconds) by an increased level of
fractality (reflected by the drop in Holder exponent). If this increase in fractality is in fact a predictor of
the coming drop in the availability of the resource, then the shift in the Holder exponent could be used to
give an alarm that a change in system performance may be imminent. Measuring the lg_alloc parameter
directly in this case would be very useful since, upon the onset of fractality, the resource does not display a
very pronounced change in magnitude (in which case it would be easy to detect without resorting to fractal
analysis). The Holder exponent displays a marked change in magnitude, however, thereby enabling detection
of the increased volatility in the original resource.

None of the data sets we collected from this server actually preceded a system crash. The monitored
server did not crash during the experiment, the period exceeding four months of data collection. So, in order
to test our hypothesis that an approaching system crash could be anticipated and prevented through fractal
analysis of a system’s memory use, we set up another experiment specifically designed to generate artificialy
high workloads with known aging effects and observe computer crashes. In addition, we needed to more
accurately model the behavior of the system and come up with an algorithm that would issue an alarm when
an operating system crash becames likely. The data resulting from such an experiment, along with certain
observations and conclusions derived from it, is discussed in the next two sections.

4 Design of Experiment

4.1 Setup

Our “crash experiment” used the ‘System Stress for Windows NT 4.0 and Windows 2000’ software that is
included in a subscription to the Microsoft Developer Network (MSDN). Two computers were set up next

Naur Sept 16 00:00-02:20 freemem fractal dimension = 13154093

0411
01.329 7
0.247 7
0165 7
0082 7
(1.000 T f v T

0 1638 1277 4015 6534 | 8192

Naur Sept 16 00:00-02:20 freemem Holder exponent

1.20 !
0Y9a T
0.72 7
048
0.24 7
0,00 . . r :

0 1538 3277 4915 6554 ! 5192

Figure 2: 8192 seconds of the freemem parameter from the Naur experiment along with its Holder exponent

to each other and networked together with a crossover cable, thus forming a LAN of only the two machines.
The System Stress software was installed on one computer (a Dell machine with 600 MHz processor, 64 MB
of RAM, running Windows 2000) and configured to contact the other computer with service requests. The
computer that was subject to the stress was a home-grown machine with a 750 MHz AMD processor, 256
MB of RAM, and running Windows 2000.

The System Stress utility gives the user a large number of stress programs that may be used in any
particular trial. The selection of which additional stress program to add to the machine was made by a few
lines of java code that output a random number. Every few minutes the administrator of the experiment
would randomly generate a short list of additional programs and add them to the current stress test. Once a
large enough number of programs were added to the stress test, the stress would reach the level of exhaustion
of operating system resources necessary for causing the system crash.

Prior to starting the stress utility, a performance log would be set up to record data every second for
the duration on the trial. The utility used for the collection of data was the “Performance Logs and Alerts”
utility available in the Windows 2000 Operating System. During the experiment we initially collected data
on 68 different parameters of the operating system, but winnowed this number down to 20 for our subsequent
analysis. This number was eventually reduced to the three. The crash of the operating system naturally
disrupted the collection of data, but the process was robust enough to collect data until the penultimate

Naur Sept 22 00:00-02:20 lg_alloc fractal dimension = 1.5483433 Naur Sept 17 00:00-02:20 lg_alloe fractal dimension = 1.5536419

1638 3277 | 4915 6554 8192

Naur Sept 22 00:00-02:20 lg_allos Holder fxponent Naur Sept 17 00:00-02:20 1g_alloe Holder exponent

Figure 3: Onset of Fractality Precipitates Fall in Resource Availability (1g_alloc).

second before the crash. The experiment was run 20 times, with a crash sometimes occuring within the first
5 minutes of the experiment, and sometimes occurring after more than a day of the operation.

4.2 The Data

The data we collected and analyzed confirmed our hypothesis that an increase in fractality tends to precede
a crash. Figure 4 shows the plots of the three parameters we monitored with the Holder exponent of the
corresponding three-dimensional time series plotted below them.

5 Fractal Aging: Analyzing Holder Exponent Plots

Even a cursory glance at the Holder exponent plots depicting the dynamics of the monitored operating
system resources shows that, typically, a decreasing trend in the value of Holder exponent (i.e. increase in
fractality) of the memory resource dynamics is observed as the stress on the system increases before the
system crashes (see Holder exponenttime series from eight different experimental runs in Figure 5).

The collected data reinforced our belief that the process of resource exhaustion is quantitatively manifested
in the decrease of the value of Holder exponent of the system’s memory resources considered as functions of
time. However, to be of any practical value, this intuitive observation has to be converted into a precise
quantitative indicator. This problem required further investigation, both experimental and theoretical. Here
we present only the first step in this direction, which suggests the possibility of developing an ’early crash
warning’ algorithm for an operating system based on the on-line multifractal analysis of its resource data.
Such an algorithm can be used to build an efficient automated software rejuvenation tool.

We started by selecting a small group of resources suitable for the analysis. We based our choice on the
following selection criteria:

1. The resource should represent “continuous” quantity, and it should not represent “per unit of time”
measurements. This criterion disqualifies such resources as system_driver_total_bytes, because of their
discrete, discontinuous nature, as well as system_calls_per_sec and such, since they represent quantities
measured per unit of time (second). Remark: It is worth noting that the per-unit-of-time quantities
may be of considerable interest for the multi-fractal analysis. However, they should be treated as multi-
fractal measures, as opposed to multi-fractal signals. Therefore the computational methods involved
in it would be rather different. We will address the multi-fractal analysis of this type of resources in
our future studies.

Figure 4: Available Bytes, Pool Paged Allocs, System Cache Resident Bytes, and their multidimensional
Holder exponent .

2. The resources whose plots exhibit flat or smooth behavior or consist of several intervals of such behavior
are not suitable for the fractal analysis. In our experiments the resources system_code_total_bytes
and system_driver_resident_bytes demonstrated such behavior and, therefore, were excluded from the
monitoring effort.

3. The group of resources selected for analysis should not have high mutual correlations.

Proceeding in accordance with the above guidelines, we have selected the following three system param-
eters:

1. available_bytes,
2. pool_paged_allocs,

3. system_cache_resident_bytes.

Please note that the choice is not uniquely determined by the guidelines. All these parameters represent
various kinds of memory resources, they demonstrate fractal behavior and do not have too high mutual
correlations. The following table gives the correlations for the three parameters we have chosen:

| || avail_bytes | pool_page_allocs | sys_cache_res_bytes |

avail_bytes 1.0 -0.66 -0.85
pool_page_allocs -0.66 1.0 0.5
sys_cache_res_bytes -0.85 0.5 1.0

All the (non-diagonal) mutual correlation values have absolute value < 0.85. We wanted to incorporate
into our analysis the fractal behavior of all three of these parameters. To this end, we considered the three
parameters as a 3-dimensional memory resource vector. We sample this vector as it changes in time resulting
in a three-dimensional time series, to which we apply the multi-fractal analysis. The analysis is performed
on-line, with its Holder exponent computed at every point of observation. The formula for the Holder
exponent, is slightly modified in the case of a multidimensional function:

e e log([[f(E+R) — @)
7p() = liminf og(|h)

The algorithm we used to estimate the Holder exponent of the multidimensional time series is the same as
described in Section 2.2, only instead of the difference between two points, we use the Euclidean distance.

Figure 5 shows the plots of the Holder exponent of the 3-dimensional memory resource vector in 8
experiments ending with the system crashing. Though the Holder exponent series obtained are rather
noisy (this is typical for experimentally estimated Holder exponent values), certain common patterns can be
distinguished.

Even by a mere visual inspection of the plots, one can observe that the plots have long intervals during
which the Hélder exponent fluctuates around a certain level. This quasi-constant behavior is sometimes
(infrequently) interrupted by moments of abrupt significant changes (mostly drops) in the average value
of Holder exponent. We call a sudden sustained drop in the average value of Holder exponent a fractal
breakdown. Most of our experimental plots (twelve out of the fifteen data series we analized) contain exactly
two such breakdowns. Based on this observation we make the following

Conjecture. The second fractal breakdown observed during the experimental system observation signals
a dangerous level of resource exhaustion, but leaves enough time to shut the system down before the crash
occurs.

6 Detecting the Fractal Breakdowns

In order to validate the above conjecture and implementing the emergency shutdown strategy based on it
we faced the following problems:

10

1. Detecting fractal breakdown. We view the problem as that of detecting a change in the mean value
of a noisy time series (see e.g. [11]). Here the time series in question is the one formed by values of
the Holder exponent of the memory resource vector computed during the experiment. We model the
behavior of the Holder exponent as a piece-wise constant function of time with a white Gaussian noise
added to it. In the following subsection we describe the application of the classical Shewhart change
detection algorithm [11] to solve the problem of detecting the second fractal breakdown in our time
series.

2. Determining the optimal shutdown time after the second breakdown has been detected. In order to
infer the optimal strategy for choosing shut-down time to, on one hand, let the system run as long as
possible, while, on the other hand, not allowing it to crash before the shutdown, we plan to study the
statistics of the time intervals between the second breakdown and the crash. This remains the topic
of the future research and it is not reported herein.

6.1 Using Shewhart Algorithm for Fractal Breakdown Detectionion

Though numerous good change detection algorithms exist, most of them presuppose the a priori knowledge
of the main parameters of the post-change signal. This is not the case in our situation where the change
detection needs to be performed in real time. We used the classical Shewhart control charts algorithm.
However, for the reason mentioned above, we needed to modify it so that, unlike in the classical situation,
the mean and the variance of the signal are estimated on-line instead of being known a priori.

The details of the algorithm we used to detect the sudden drops in the Holder exponent signal are given
in Appendix 2.

Figure 6 shows four sample plots of the Holder exponent of the combined (3-dimensional) resource vector,
where the two sudden drops in the mean value of Holder exponent (fractal breakdowns) occur before the
system crashes. The moments of the 15! and the 2"¢ fractal breakdowns have been detected using the
Shewhart Control Charts algorithm, as described in Appendix 2. In the charts shown in Figure 6 the time
elapsing between the 2" fractal breakdow and the moment of crash failure varies from three minutes to
over thirty minutes. This situation is characteristic for our entire collection of data sets. In other words,
the time between the 27¢ drop in Holder exponent and the crash of the system varies widely, thus posing
a difficult problem of developing an optimal software rejuvenation strategy based on the fractal breakdow
events. However, we consider our current result of successfully predicting the occurrence of the upcoming
system crash in 12 out of 15 experiments a success and a sound basis for continued research.

7 Conclusion

This paper presents an investigation of the dynamics of memory resource utilizations in an operating system
using quantitative methods of fractal analysis. To the best of our knowledge, this is the first study attempting
to utilize the principles of fractal analysis to performance analysis of computer systems.

In the experiments, we recorded the time series representing various memory related parameters of the
operating system. We report the observation that several operating system parameters demonstrated clear
multifractal behavior. Interestingly, the degree of fractality of these time series tends to increase as the system
workload increases. Therefore, we conjecture that the Hoelder exponent, which measures the local rate of
fractality, may be used as a quantitative measure of operating system resource exhausion. We developed a
simple and fast proactive computer crash avoidance strategy based on the online fractal analysis of system
memory resource observations. The described algorithm succesfully predicted upcoming system crashes in
80% of our experiments.

While promissing, the results of this paper should be considered as preliminary and their general appli-
cability, at this point in time, is not guaranteed. It is easy to note that our experimental setup was rather
simplistic. In the local area network, the computer under observation was exposed to increasing workloads
only. Tt is unclear whether the same simplistic fractal functions with few (in the specific case two breakdown
points) would result from experiments with varying workloads (increasing as well as decreasing). Further-
more, while we reduced the number of monitored variables to only three, the impact of monitoring to system

11

performance should not have been ignored. We noticed differences in system performance in experiments
with a different number of operating system variables being monitored.

In summary, while exciting and promissing, our current result indicate the need for further experimen-
tation and improved modeling. However, we do believe that the demonstrated suitability of multifractal
analysis methods cannot be ignored and will play an increasingly important role in computer system perfor-
mance modeling.

Te4 1537 rarish |

2139 2208

2368 5052

i 114 e 3445

"3 518 5037 7555

13

i

1.0

L F o

'8 0 g8 1677 515

13

G816 13653 20479

Figure 5: Multidimensional Hélder exponent for eight different sets of crash data.

12

13

=

[=]
in

1008 Z000 Joon 4wooo 5000 L L] LeBO g4yom iE00

-

[=]
=]

500 1oEm0 1500 2[00 L 500 1Loom 1500 2000 2500

Figure 6: Four Hdélder exponent time series ending in crash with pink dashes showing fractal breakdowns
detected using modified Shewhart algorithm.

14

References

[1]
2]

Michael Barnsley. Fractals Everywhere. Academic Press, 1988.

Khalid Daoudi and Jacques Lévy Véhel. Speech signal modeling based on local regularity analysis.
IASTED IEEE International Conference on Signal and Image Processing, 1995.

Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley and
Sons, 1990.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

E. Tosan J. Thollot, C.E. Zair and D. Vandorpe. Modeling fractal shapes using generalizations of IFS
techniques. In Fractals in Engineering, pages 65—80. Springer, 1997.

K. Trivedi K. Vaidyanathan. A measurement-based model for estimation of resource exhaustion in
operational software systems. Proceedings of the 19th International Symposium on Software Reliabiltiy
Engineering, 1998.

Khalid Daoudi, Jacques Lévy Véhel and Yves Meyer. Construction of continuous functions with pre-
scribed local regularity. Journal of Constructive Approximation, 14(3):349-385, 1998.

Benoit Mandelbrot Laurent Calvert, Adlai Fisher. Large deviations and the distribution of price changes.
Technical Report 1165, Cowles Foundation, Sep 1997.

Benoit Mandelbrot. Fractals: Form, Chance, and Dimension. W.H. Freemen and Company, 1977.

Petros Maragos. Modulation and fractal models for speech analysis and recognition. Proceedings of
COST-249 Meeting, Feb 1998.

Tgor V. Nikiforov Michele Basseville. Detection of Abrupt Changes : Theory and Application. Prentice
Hall, April 1993.

R. Morin A.L. Goldberger L.A. Lipsit N. Iyengar, C.K. Peng. Age-related alterations in the fractal
scaling of cardiac interbeat interval dynamics. American Journal of Physiology, 40(4):1078-1084, 1996.

Z. R. Struzik. Revealing Local Variablity Properties of Human Heartbeat Intervals with the Local
Effective H?lder Exponent. Technical Report INS-R0015, CWI, Amsterdam, The Netherlands, July
2000.

David Parnas. Software aging. Proceedings of the 16th Intl. Conference on Software Engineering, pages
279-287, 1994.

Edgar E. Peters. Fractal Market Analysis. John Wiley and Sons, 1994.
A. Van Moorsel S. Garg. Towards performability modeling of software rejuvenation.

K. Vaidyanathan K. Trivedi S. Garg, A. Van Moorsel. A methodology for detection and estimation of
software aging. Proceedings of the 9th International Symposium on Software Reliability Engineering,
pages 282292, 1998. Paderborn, Germany.

K. Trivedi T. Dohi, K. Goseva-Popstojanova. Statistical non-parametric algorithms to estimate the
optimal software rejuvenation schedule. Proceedings of the 2000 Pacific Rim International Symposium
on Dependable Computing, pages 77-84, 2000.

P. Heidelberger S. W. Hunter K. S. Trivedi K. Vaidyanathan W.P. Zeggert V. Castelli, R.E. Harper.
Proactive management of software aging. IBM J. Res. and Dev., 45(2):311-332, Mar 2001.

Jacques Lévy Véhel and Khalid Daoudi. Generalized IFS for signal processing. IEEE DSP Workshop,
Sep 1996.

15

[21] Walter Willinger Daniel Wilson Will Leland, Murad Taqqu. On the self-similar nature of ethernet
traffic. IEEE/ACM Transactions on Networking, 2:1-15, 1994.

[22] N. Kolettis N. D. Fulton Y. Huang, C. Kintala. Software rejuvenation: Analysis, module and applica-
tions. Proceedings of the 25th Intl. Symposium on Fault- Tolerant Computing, 1995.

[23] S. Jaffard, Multifractal formalism for functions, Comptes Rendus de I’Acadmie des Sciences,, 31T:
745-750, 1993.

16

Appendix 1: Algorithm for Numerical Evaluation of Holder Exponent of a Dis-
crete Signal

Suppose {yo, Y1, Y2, -, Yn} is a time series of length n representing some quantity measured at uniform
intervals. The idea is that the degree to which the function is smooth or chaotic (and therefore the strength
of its Holder exponent) at a certain data point y; is a function of a number of data points preceding and
following it. This number, s, is called the window width and is not fixed but is rather a parameter set by the
user when running the algorithm. The weight that each of the 2s values (s values on each side of the data
point) has on the ultimate calculation of the Holder exponent is controlled by another parameter, A. A is
called the weighted regression coefficient and must satisfy 0 < A < 1. Adjusting the strength of A\ will allow
us to adjust the degree to which the data points further away from the point we are interested in influence
the calculation of the Holder exponent at that point. Obviously nearby points should have a greater weight
than distant points.

To calculate the Holder exponent at the ¢th point in a data set, we begin by choosing a window width,
s, and a value for \. We have used A = 0.5 and s = 10 for all the Holder exponent calculations appearing in
this study.

Next, we calculate a value, R; j, for each integer k # 0 from —s to s in the following manner:

_ loglyirr — vil

Ry
log(a45)

In the above case, k must satisfy 0 < i+ k < n. For data points at the very beginning or end of the time
series for which s values to the left or right are not available, s is shrunk to the appropriate size.
Then, in the second step, for each integer j, 1 < j < k, calculate

hij = min{R; : |k| < j}

(This corresponds to taking the liminf in the equation for the Holder exponent).
In the third step, calculate 7{;, the estimate of the Holder exponent at the ¢th data point by computing
the weighted average of the approximations h; ;:

1-A

M=l

hit + Mhio 4+ Nhig + .. + AN R)
where more weight is given to terms with a smaller k (i.e., h closer to 0 in equation 1).

Appendix 2: Shewhart Algorithm Adopted for Online Detectionion of a Fractal
Breakdown

Though numerous good change detection algorithms exist, most of them presuppose the a priori knowl-
edge of the main parameters of the post-change signal. This is not the case in our situation where the change
detection needs to be performed in real time. We used the classical Shewhart control charts algorithm (see
e.g. [11]), however, for the reasons mentioned above, we needed to modify it so that, unlike the classical,
situation, the mean and the variance of the signal are estimated on-line instead of being known a priori.
The Shewhart control charts is based on the maximum likelihood principle where the change hypothesis
of is tested against the no change hypothesis. Between the changes the signal is assumed to be stationary
independent Gaussian process with constant mean and variance, where we are trying to detect the change
in the mean value considered as a parameter.

Let y;, ¢ = 1, 2, , T be a noisy time series which is observed in real time and in which we want to detect
a moment of sharp change. Here we are interested only in downward changes (drops), since this is the type
of change we want to be able to detect in the Holder exponent signal (we hypothesize that the 2nd such
change indicates a dangerous level of resource exhaustion in the system).

Fix the starting point by setting 7, = 0. Skip first N data points; then for each data point with
n > To+ N compute the statistical estimate of the mean and the standard deviation of the current fragment

17

of our time series:

1 n
Mn = n—T, Z Yjs3
j=To+1

n

Un:\/n—j{o—l Z (yj_ﬂ)2-

J=To+1

Compute the local (last N points) average of the signal:

Then compute the normalized discrepancy term between the local (moving) average and the global mean:

P.s

On

Pn — Qn).
Check if the discrepancy d,, exceeds threshold &, i.e. if the inequality
d, > ¢

holds. Before declaring that a change has occurred we are looking to confirm that the change is sustained
and not merely an isolated local anomaly. If the inequality d,, > £ holds for p consecutive points (n, n+1,,
n+p-1) we decide that a (sustained) downward change and restate the starting point for our parameter
estimation by setting

T(] =n.

The parameters: N (local averaging time); p (change confirmation time); £ (deviation threshold) are
controllable and can be tuned to make the algorithm sufficiently sensitive but not too prone to false alarms.

